博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[算法]空间复杂度,时间复杂度【转】
阅读量:5321 次
发布时间:2019-06-14

本文共 1435 字,大约阅读时间需要 4 分钟。

http://baike.baidu.com/view/540497.htm

空间复杂度:

一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。若一个算法为递归算法,其空间复杂度为递归所使用的堆栈空间的大小,它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表示开始进行的一次非递归调用)。算法的空间复杂度一般也以数量级的形式给出。如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为O(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。

分析一个算法所占用的存储空间要从各方面综合考虑。如对于递归算法来说,一般都比较简短,算法本身所占用的存储空间较少,但运行时需要一个附加堆栈,从而占用较多的临时工作单元;若写成非递归算法,一般可能比较长,算法本身占用的存储空间较多,但运行时将可能需要较少的存储单元。

http://baike.baidu.com/view/104946.htm

时间复杂度:

1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))

分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方 次
}
}
则有 T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3) 注:n^3即是n的3次方。
3.在pascal中比较容易理解,容易计算的方法是:看看有几重for循环,只有一重则时间复杂度为O(n),二重则为O(n^2),依此类推,如果有二分则为O(logn),二分例如快速幂、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。

转载于:https://www.cnblogs.com/jinjiantong/archive/2013/03/19/2969863.html

你可能感兴趣的文章
iOS开发之使用XMPPFramework实现即时通信(一)
查看>>
CentOS 6.5(x86_32)下安装Oracle 10g R2
查看>>
C语言学习总结(三) 复杂类型
查看>>
HNOI2018
查看>>
【理财】关于理财的网站
查看>>
Ubunt中文乱码
查看>>
《当幸福来敲门》读后
查看>>
【转】系统无法进入睡眠模式解决办法
查看>>
省市县,循环组装,整合大数组
查看>>
python--闭包函数、装饰器
查看>>
Phpstorm中使用SFTP
查看>>
stm32中字节对齐问题(__align(n),__packed用法)
查看>>
like tp
查看>>
使用 github Pages 服务建立个人独立博客全过程
查看>>
posix多线程有感--线程高级编程(线程属性函数总结)(代码)
查看>>
spring-使用MyEcilpse创建demo
查看>>
DCDC(4.5V to 23V -3.3V)
查看>>
kettle导数到user_用于left join_20160928
查看>>
activity 保存数据
查看>>
typescript深copy和浅copy
查看>>